

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

1846310240

ADDITIONAL MATHEMATICS

0606/21

Paper 2 May/June 2024

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

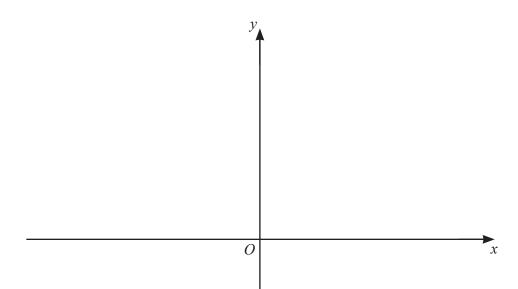
- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

This document has 16 pages. Any blank pages are indicated.

1 (a) On the axes, sketch the graph of y = |4x - 6|, showing the points where the graph meets the axes. [2]



(b) Solve the equation |4x-6| = |2x|. [3]

2 (a) Write $3+4x-2x^2$ in the form $a+b(x+c)^2$, where a, b and c are integers. [3]

(b) Hence write down the range of the function $f(x) = 3 + 4x - 2x^2$, where $x \in \mathbb{R}$. [1]

3 Use algebra to show that the equation 5x(x-3) = 5x-26 has no real solutions. [3]

4 DO NOT USE A CALCULATOR IN THIS QUESTION.

(a) Find the exact distance between the two points where the curve $9(x-1)^2 + 4(y-3)^2 = 36$ cuts the y-axis. [4]

(b) Find the coordinates of the points where the curve with equation $2x^2 + 83xy = x^3y - 20x$ intersects the curve with equation $y = \frac{1}{x}$. Give each of your answers in the form $a + b\sqrt{c}$, where a and b are rational and c is the smallest integer possible.

5 %	The	There are 3 women, 2 men and 4 children in a choir.										
	(a)	The	The choir stands in a single straight line.									
		(i)	Find the number of possible arrangements if the first person and last person are both women [
		(ii)	Find the number of possible arrangements if all the children stand next to each other.	[2]								
	(b)	Fou	r of the choir are selected to sing in a group. Find the number of different selections if no man is chosen.	[2]								
		(ii)	Find the number of different selections if at least 2 women are chosen.	[2]								

Variables x and y are such that $y = \cos x \sin^2 x$. Use differentiation to find the approximate change in y as x increases from 3 to 3 + h, where h is small. [5]

7 It is given that $y = mx^2 + \frac{x}{2} + n$, where m and n are non-zero constants. It is also given that $3\left(\frac{d^2y}{dx^2}\right) = \left(\frac{dy}{dx}\right)^2 - y$ for all values of x. Find the values of m and n. [4]

8 (a) In an arithmetic progression, the sum of the first 30 terms is -1065. The sum of the **next** 20 terms is -2210. Find the first term and the common difference.

[5]

(b) A geometric progression is such that the first term is 4 and the sum of the first three terms is 7. Find the two possible values of the common ratio and find the sum to infinity for the convergent progression. [5]

The functions f and g are defined by

$$f(x) = \frac{3x^2}{4x - 1}$$
 for $x < 0$

$$f(x) = \frac{3x^2}{4x - 1}$$
 for $x < 0$
 $g(x) = \frac{1}{x^2}$ for $x < 0$.

(a) Explain why the function fg does **not** exist.

[1]

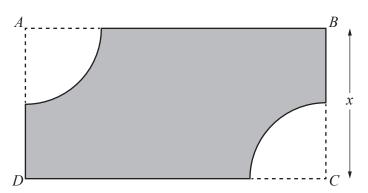
(b) Given that the function gf does exist, find and simplify an expression for gf(x). [2]

(c) Show that $f^{-1}(x)$ can be written as $\frac{px - \sqrt{x(qx+r)}}{3}$ where p, q and r are integers. [4]

10 (a) Show that $(\tan x + \sec x)^2$ can be written as $\frac{1 + \sin x}{1 - \sin x}$. [4]

(b) Hence solve the equation
$$(\tan 3\theta + \sec 3\theta)^2 = 6$$
 for $0^\circ \le \theta \le 180^\circ$. [4]

11 In this question all lengths are in centimetres.



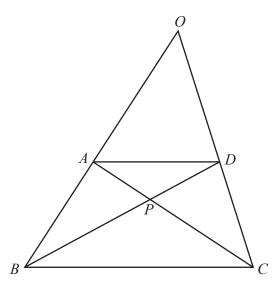
The diagram shows a rectangle ABCD with BC = x. The area of the rectangle is 400 cm^2 .

Two identical quarter-circles of radius $\frac{x}{2}$, with centres A and C, are removed from the rectangle to make the shaded shape.

Given that x can vary, find the value of x that gives the minimum value of the perimeter of the shaded shape and hence find this minimum value. [7]

Continuation of working space for Question 11.

12



The diagram shows a triangle OBC.

OA : OB = 4 : 7 and OD : OC = 4 : 7.

$$\overrightarrow{OB} = \mathbf{b}$$
 and $\overrightarrow{OC} = \mathbf{c}$

The point P is the point of intersection of AC and BD such that $\overrightarrow{AP} = \lambda \overrightarrow{AC}$ and $\overrightarrow{BP} = \mu \overrightarrow{BD}$ where λ and μ are scalars.

(a) Find two expressions for \overrightarrow{OP} , each in terms of **b**, **c** and a scalar, and hence show that *P* divides both AC and DB in the ratio 4:7. [7]

(b) The point Q is such that $\overrightarrow{OQ} = \frac{2}{7}\mathbf{b} + \frac{2}{7}\mathbf{c}$.

Use a vector method to show that O, Q and P are collinear. Justify your answer.

[2]