

Cambridge Lower Secondary Checkpoint

cs		1112/01
	CANDIDATE NUMBER	
	CS CS	NUMBER

You must answer on the question paper.

You will need: Geometrical instruments Tracing paper (optional)

INSTRUCTIONS

Paper 1

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should show all your working in the booklet.
- You are not allowed to use a calculator.

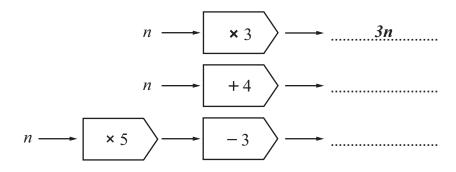
INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

April 2021 1 hour 1 Complete the calculations.

(a)
$$0.9 \times 4 =$$

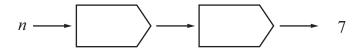
[1]


(b)
$$\times$$
 7 = 2.8

[1]

2 (a) Write an algebraic expression for each function machine.

One has been done for you.



[1]

(b) Complete the function machine for the statement below.

Hassan thinks of a number. He divides the number by 4 and then adds 2

The answer is 7

[1]

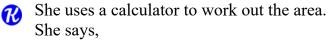
(c) Work out the number Hassan was thinking of in part (b).

[1]

3 Here is a number fact.

$$148 \times 76 = 11248$$

Use this fact to work out the calculations.


$$14.8 \times 76$$

.....

 149×76

[2]

4 Eva measures the diameter of a circle as 15.9 cm.

Round this answer to an appropriate degree of accuracy.

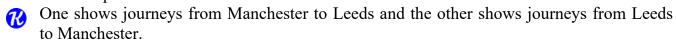
cm² [1]

_	4
5	Work out.
$\mathbf{\mathcal{I}}$	Work out.

7.2 - 3.463

6 Here is a number statement.

$$\frac{11}{12} - \frac{1}{2} = \frac{a}{12}$$


Find the value of *a*.

$$a =$$
 [1]

7 Work out 15% as a fraction in its simplest form.

Here are parts of two train timetables.

Manchester	07:40	08:11	08:41	09:11	09:41	10:10
Stalybridge	07:53	08:25	08:54	09:25	09:54	10:24
Huddersfield	08:12	08:46	09:13	09:46	10:13	10:45
Dewsbury	08:23	08:55	09:23	09:55	10:22	10:54
Leeds	08:36	09:09	09:36	10:08	10:35	11:07

Leeds	08:40	09:13	09:41	10:14	10:41	11:14
Dewsbury	08:51	09:24	09:52	10:25	10:52	11:25
Huddersfield	09:00	09:34	10:01	10:34	11:01	11:34
Stalybridge	09:19	09:54	10:19	10:54	11:19	11:54
Manchester	09:38	10:09	10:38	11:08	11:38	12:07

(a)	Carlos is 1	travelling	from Stalv	ybridge to	Leeds	on the	08:54	train
(/		0		, 0				

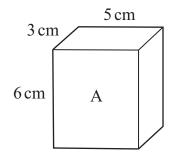
Find how long his journey takes.

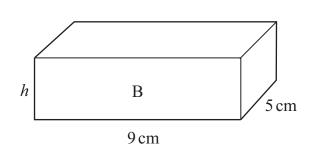
	minutes	[1]
(b)	Jamila is travelling from Leeds to Dewsbury. She arrives at the train station in Leeds at 8.50 am.	
	Find the time of the next train to Dewsbury.	
		[1]
(c)	Oliver travels from Huddersfield to Leeds on the $08:12$ train. He goes shopping in Leeds and returns to the station $1\frac{1}{2}$ hours after he arrived	

He goes shopping in Leeds and returns to the station $1\frac{1}{2}$ hours after he arrived. He then catches the next train back to Huddersfield.

Find the time he gets back to Huddersfield.

F 1 7
 +


9 Convert 160 kilometres into miles.



mıles [1]

10 The diagram shows two cuboids.

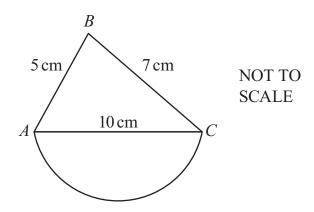
NOT TO SCALE

The cuboids have equal volume.

Find the height, *h*, of cuboid B.

h =		
Ti.	cm	2

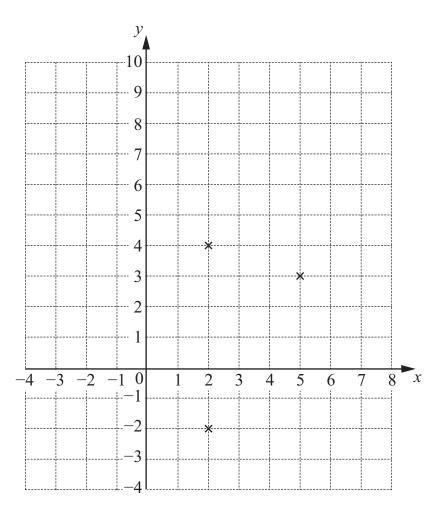
11 Tick (\checkmark) to show if each of these statements is true or false.


One has been done for you.

	1 rue	False
$1\mathrm{m} = 100\mathrm{cm}$	\checkmark	
1 mm = 0.01 cm		
$1 \mathrm{kg} = \frac{1}{1000} \mathrm{g}$		
1 tonne = 1000 kg		

[1]

12 Here is a sketch of a compound shape made from a triangle and a semicircle.

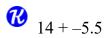


Use a ruler and compasses to construct the shape accurately. Leave in your construction lines. Line AC has been drawn for you.

13 The diagram shows the positions of three vertices of a parallelogram.

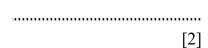
(a) Write down the coordinates of a possible position of the fourth vertex.

1		`	Г17
(1	
•	,	,	1 + 1
-		 _	


(b) Write down the coordinates of a different possible position of the fourth vertex.

(_______) [1]

	Write $\frac{66}{72}$	as a fraction in its simplest form.
B	, –	



15 Work out.

٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	١	•			•	•

$$-6 \times -1.5$$

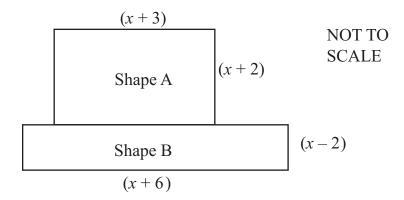
16 A shop sells two sizes of washing powder.

Pack A contains 900 g plus $\frac{1}{4}$ extra free.

Pack B contains 1 kg plus 20% extra free.

Tick (\checkmark) the pack that contains the most powder. You must show your working.

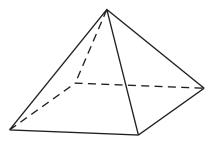
Pack A	Pack B	


[2]

17 Two different rectangles are joined together to make a compound shape.

Shape A has a length of (x + 3) and a width of (x + 2). Shape B has a length of (x + 6) and a width of (x - 2).

All measurements are in centimetres.


Find an expression for the area of the compound shape in cm². Give your answer in the form $ax^2 + bx + c$.

[3]

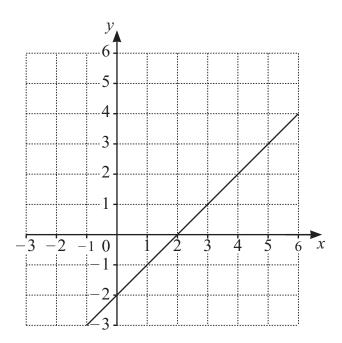
18 Here is a square-based pyramid.

The top vertex is directly above the middle of the base.

Write down the number of planes of symmetry in the pyramid.

																																					ſ	1	1		
			ı	ı	ı	ı	ı	•	ı	•	•	•	ı	•	•	•	•	ı	ı	ı	ı	ı	ı	ı	ı	ı		•						•	•		L	-		-	٠

19 The table shows the ratio of the number of teachers to the number of students needed for each class.


Class	Teachers : Students
Swimming	1:3
Volleyball	1:10
Football	1:12

		Volleyball	1:10	
		Football	1:12	
	14 choo All the o	s are asked to choose from the tose swimming, 22 choose volley classes happen at the same time te the number of teachers neede	ball and 27 choose football.	
				[2]
	There as	e class needs a ratio of 1 teacher re 5 dance teachers. ents choose dance.	for every 16 students.	
	Calculat	te how many more students can	attend the dance class.	
				[1]
20 %		o investigate if older students has students at her school.	ave more money than younger s	tudents.
	Identify two	pieces of data that Mia must c	ollect from each of the students.	

and [1]

21 The grid shows a straight line.

(a) Draw a ring around the equation of the line.

$$y = x + 2$$

$$y = x + 2$$
 $y = 2x + 2$ $y = -2$ $y = x - 2$ $y = 2x - 2$

$$y = -2$$

$$y = x - 2$$

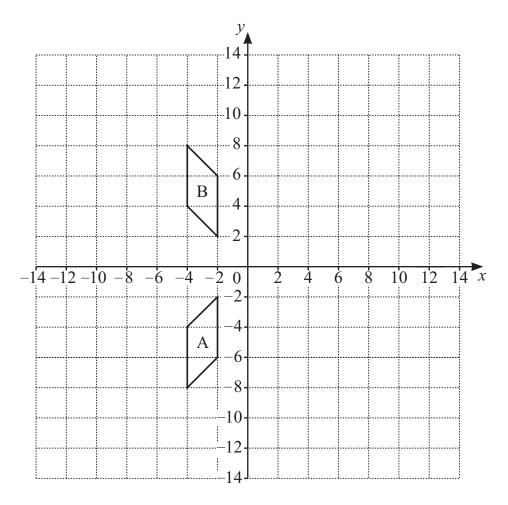
$$y = 2x - 2$$

[1]

(b) A different equation is 2x + y = 4

Complete the table of values for 2x + y = 4

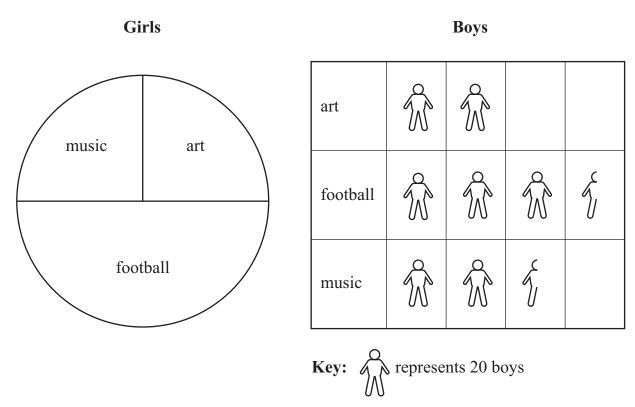
x	0		3
y		0	-2


[1]

(c) Draw the line 2x + y = 4 on the same grid.

[1]

22 Two shapes are shown on the grid.

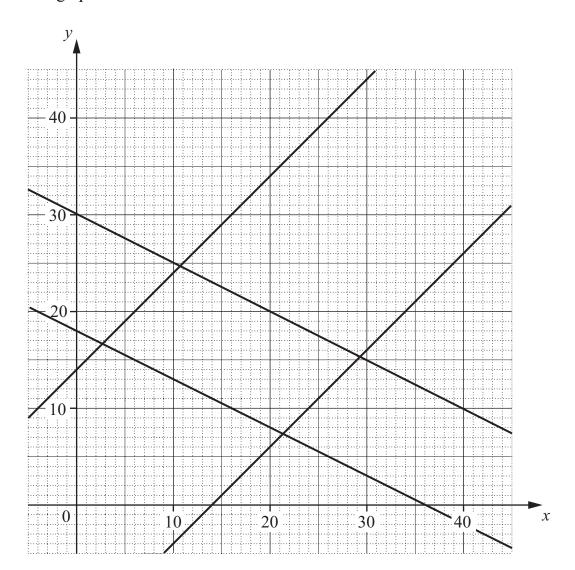

(a) Describe the single transformation that maps shape A onto shape B.

[2]

(b) Draw the image of shape B after an enlargement, scale factor 2, centre (-10, 8). [2]

- 23 Students can choose to take part in a club after school.
- B

Lily draws a pie chart to show the clubs chosen by girls. Yuri draws a pictogram to show the clubs chosen by boys.



Tick (\checkmark) to show if each of these statements is true or false or you cannot tell.

	True	False	tell
Ten more boys choose football than choose music.			
The modal club is the same for both girls and boys.			
A larger proportion of girls than boys choose art.			
A larger number of boys than girls choose football.			
			[2]

24 Here is a graph of four lines.

The equations of the lines are

$$y = x + 14$$

$$y = x - 14$$

$$x + 2y = 36$$

$$x + 2y = 60$$

Use the graph to find an approximate solution to these simultaneous equations.

$$y = x + 14$$
 and $x + 2y = 36$

$$x = \underbrace{\qquad} \text{ and } y = \underbrace{\qquad} [2]$$

- 25 William plays a game.
- He throws two fair dice.

His score is the **higher** of the two numbers shown on the dice.

The sample space diagram shows some of his possible scores.

				First	dice		
		1	2	3	4	5	6
	1	1	2	3	4	5	6
e	2	2	2	3	4		
d die	3	3	3	3	4		
Second dice	4				4		
Š	5					5	
	6						6

(a)	Complete	the sample	space	diagram.
-----	----------	------------	-------	----------

[2]

(b) Work out the probability that his score is greater than 4

	1]	