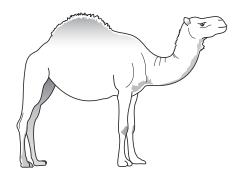

NAME	
SCIENCE Paper 2	11 ^o April
Candidates	45 mi answer on the Question Paper.
Additional M	
A famous ha	* = = = = = = = = = = = = = = = = = = =
A farmer br	reeds goats for their milk.
(a) The far	rmer uses selective breeding.
These	are the steps he uses.
They a	are in the wrong order.
Α	He breeds the female goat with a male goat.
В	He repeats the steps for several generations.
С	He chooses a female goat that produces a lot of milk.
D	He breeds the female offspring with a male goat.
	He chooses a female offspring that also produces a lot of milk.
E	e steps in the correct order.
	as been done for you.
Put the	
Put the	
Put the	E
Put the	

		Circle the correct a	inswer.		
				Copernicus	
				Darwin	
				Galileo	
				Pasteur	
				Rutherford	F41
2				ion between sodium carbonate and dilute nitric acid.	[1]
		Match the way that		to why it works .	
		Draw only two stra	ight lines.		
		way		why it works	
	Г			more crowded particles so more collisions	
		increase the temperature of nitric acid			
	L			particles have less energy so more collisions	
		increase the concentration of		particles move faster so more collisions	
		nitric acid		has bigger particles so that there are more collisions	
					[2]
	•	Lumps of sodium c carbonate. Use ideas about co		nore slowly with dilute nitric acid than powdered sodium in why.	
					 [2]

(c) Natural selection is the way new varieties of animals form in the wild.


Which scientist developed the idea of natural selection?

Use the distance/time graph to answer the questions.

(a)	How many metres did Chen move in the first 8 seconds? m	[1]
(b)	How many seconds did Yuri stop moving during his journey?	[1]
(c)	Average speed can be calculated from the graph.	
	(i) Complete the equation for average speed.	
	average speed =	F41
		[1]
	(ii) Calculate Yuri's average speed during the whole journey.	

Yuri's average speed m/s [2]

Camels live in hot dry deserts.

They have many adaptations to help them survive.

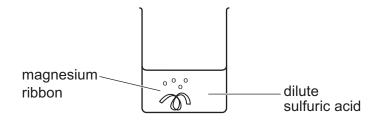
Complete the table to explain how a camel's adaptations help it survive.

The first one has been done for you.

adaptation	explanation
fat in hump only	so that the rest of the body has less insulation
large flat feet	
thick eyelashes	
does not produce sweat	

[3]

(b) Animals that live in the cold have different adaptations.


Suggest **two** adaptations that help animals survive in the cold.

1	
つ	

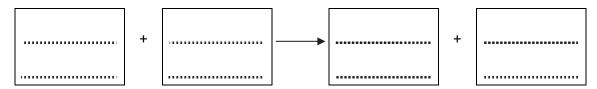
[2]

- **5** Mike makes a salt called magnesium sulfate.
- B

He adds magnesium to dilute sulfuric acid.

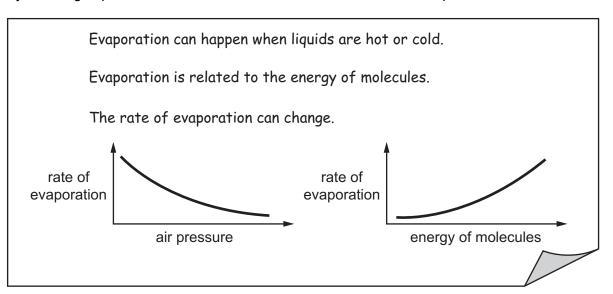
He keeps adding magnesium to the dilute sulfuric acid until no more hydrogen gas is given off.

Some unreacted magnesium is left in the magnesium sulfate solution.

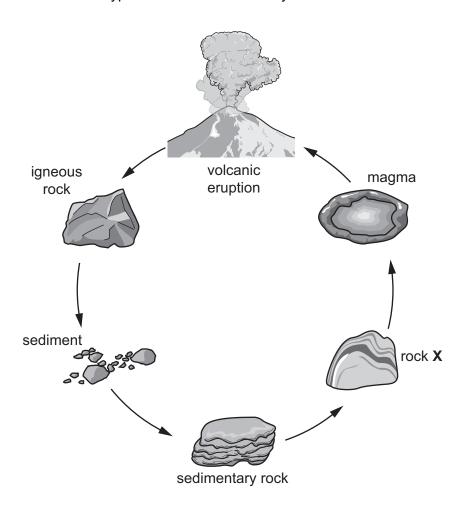

(a) Describe how Mike separates the unreacted magnesium from the magnesium sulfate solution.

[1]	

(b) Describe how Mike makes a dry sample of magnesium sulfate from magnesium sulfate solution.


[1]

(c) Write a word equation for the reaction between magnesium and sulfuric acid.


6 Lily and Angelique use the internet to find this information about evaporation.

[2]

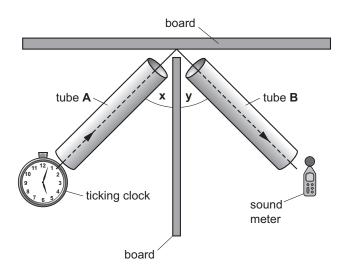
(a)	WI	hat happens to the rate of evaporation when the air pressure increases?	
		[1]]
(b)	(i)	What happens to the rate of evaporation when the energy of molecules increases?	
	/:: \	[1]]
	(11)	Write down one way the energy of molecules could be increased.	
		[1]]
7	Wat	ter and minerals move through flowering plants.	
	(a)	Complete the sentences about how water and minerals move through a plant.	
	` '	Choose parts of a plant from the list.	
		Each part can be used once, more than once or not at all.	
		Lacif part can be used once, more than once of not at all.	
		palisade mesophyll phloem root hair xylem	
		Water and minerals enter plants through the cells.	
		The water and mineral solution is transported in the stems through	
		cells.	
		The solution reaches the cells in the leaves and	l
		is used for growth.	[3]
	(b)	Plants need water to make sugar.	
		Name two other things that plants need to make sugar.	
		and	
			[2]

(a)	Sedimentary rocks ca	n be turned into rock X	by heat and pressur	e.	
	What type of rock is X	?			
					[1]
(b)	Which layer of the Ear	th contains magma?			
	Circle the correct answ	ver.			
	atmosphere	inner core	mantle	outer core	[1]
(c)	Sedimentary rocks of years ago.	ten contain the remain	ns of dead animals	and plants from mill	ions of
	What word is used to	describe these remains	?		
					[1]

(d) Different types of soil have different amounts of organic matter in them.

Which type of soil contains the most organic matter?

Circle the correct answer.


clay loam sandy silt

Sound can be reflected in the same way as light.

[1]

Safia and Yuri investigate the relationship between the angle of incidence, \mathbf{x} , and the angle of reflection, \mathbf{y} .

They use the apparatus in the diagram.

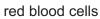
Yuri

- puts the ticking clock next to tube A
- puts the sound meter next to tube B
- uses the same value for angle **x**
- uses different values of angle y.

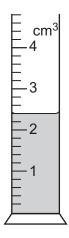
Safia writes down the sound level shown on the sound meter.

Complete the table about the variables.

variable to change	1.	
variables to control	1. 2.	value for x
	3.	
variable to measure	1.	


10 Look at the diagrams of ce	ells.
-------------------------------	-------

(a)	Describe one way the structure of a nerve cell is different to a cheek cell.		
		[1]	
(b)	The structure of a red blood cell is adapted for its function.		
	Explain how.		
	function		
	adaptation		


[2]

- **11** Mia investigates the temperature change during some reactions.
- In each experiment Mia adds a solid to a liquid.

She measures the temperature of the liquid before and after adding the solid.

(a) Mia uses a measuring cylinder to measure the volume of liquid.

The diagram shows part of her measuring cylinder of liquid.

What is the volume of liquid in the measuring cylinder?

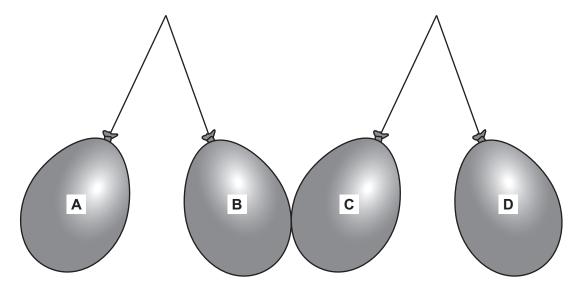
cm ³	[1]
	F.3

(b) Here are Mia's results.

liquid added	temperature of liquid	solid(s) added	temperature of the liquid after solid is added	change in temperature	is the reaction exothermic or endothermic?
water	17	copper sulfate	20	+3	
water	17	citric acid and sodium hydrogencarbonate	14		
copper sulfate solution	18	zinc	22		

(i)	She does not include some important information in the headings of the table.				
	Which unit is missing from the headings?				
		[1]			
(ii)	Calculate the change in temperature for each experiment.				
	One has been done for you.				
	Write your answers in the table.	[1]			
(iii)	Complete the table by writing endothermic or exothermic in the last column.	[1]			
Son	ne objects become electrically charged.				
(a)	Oliver draws a diagram of two charged objects.				
	plastic rod				
	Explain how the objects become charged.				
					
		[2]			

12 **7**


(b) Complete the sentences.

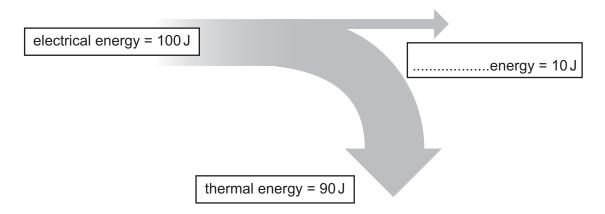
Opposite charges _____.

Like charges _____.

[1]

(c) Oliver puts charged balloons next to each other.

Balloon A has a positive charge.


What are the charges on the other balloons?

A is positive.

- **C** is ______.
- **D** is ______.

[1]

- **13** Diagrams are used to show how energy is transferred.
- Camps transfer energy.

Complete the diagram to show the type of energy that is 10 J.

[1]